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ABSTRACT

An explicit form for a stationary dilation for periodically correlated
random processes is obtained. This is then used to give spectral conditions
for a periodically correlated process to be non—deterministic, purely non-
deterministic,minimal,and to have a positive angle between its past and
future.
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1. INTRODUCTION. Stationary stochastic processes have been extensively

studied and the prediction theory of such processes is well developed and
more or less complete. Although many facts are known for nonstationary pro-
cesses, the theory of nonstationary processes needs more investigation. A
wide class of nonstationary processes is that of harmonizable processes
which were introduced by Loeve [15] and studied by several authors such as

Cramer[3]. Rozanov {24], Abreu [1], Nieme [19], [20] and Miamee and Salehi

{17 ]J. A sequence X »neZ ina Hilbert space H is called Harmonizable if

its correlation function ¥Y(n,m) = (Xn’}%l> can be expressed as

T 2T .
e~i(m0 = m¥) g g yy .

(1) ¥(n,m) =
o./o

where F is a complex-valued measure of bounded variation on the square

[0,2n] x [0,2r]. Harmonizalbe processes are natural generalizations of sta-~
fact, if the mass of the measure F is concentrated on
the diagonal of that square, a harmonizable process reduces to a station-
ary one. Nevertheless, since the class of harmonizable processes is so

broad, unlike the case of stationary processes, their studies are not as

conclusive. Another class of nonstationary stochastic processes is that of

periodically correlated processes: A sequence Xn in a Hilbert space H is

called periodically correlated with period T _i__f_\((n,m) =(n+T, m+ T),

for all m,n € Z, where Y(n,m) = (Xn,Xm) is the correlation function of Xn.

Periodically correlated processes have been recently studied by several
authors including Gradyshev [6], [7] who gave the first mathematical treatment
of these processes, Pourahmadi and Salehi [ 23], Ogura [ 21], Pagano 22.],.
Hurd [11], [12], [13], and Miamee and Salehi [18 ]. Such processes have many
applications [2], [5], (8].

For a periodically correlated process Xn’ the behavior of its spectral




distribution is quite clear now, In fact, (cf. [6]), its

spectral distribution F in (1) is, in this case, concentrated on 2T-1 equi-~
distant straight line segments parallel to the main diagonal of the square
[0,21] x [0,2%]. For harmonizable processes, an impovtant»fact which was

first observed by Abreu in [1] is the following theorem: Given any harmoni-

zable process Xn in a Hilbert space H, there exists a larger Hilbert space

K 2 H and a stationary process gn in K such that

X =PX , for all n e 2,
n —

where P is the orthogonal projection of K onto H. Any such stationary process

Kn is called a stationary dilation for Xn. Abreu in [1] gives the spectral
measure of one of these stationary dilations. However, that does not give
a clear picture of what the connection between Xn and its stationary dilation

gn is, thus it would be useful if one could obtain an explicit form for a

stationary dilation Xn in terms of Xn which would give a clear understanding of

h the time and spectral domain.

In this note, we give a complete answer to this question for periodically
correlated processes by giving an explicit closed form for a stationary dila-
tion process Kn for Xn' This will express zn in terms of the original
process Xn in the time domain (Theorem 2.1) as well as in the spectral domain
(Theorem 2.3). In section 3, we use these cruicial representations,established
in section Z'to obtain spectral conditions for é harmonizable process to be
nondeterministic, purely nondeterministic, minimal ,and interpolable. 1In
section 4, we obtain spectral conditions for a harmonizable process to have a
positive angle between its past-present and future.

2. EXPLICIT FORM OF A STATIONARY DILATION FOR PERIODICALLY CORRELATED PROCESSES,

In this section, after introducing some preliminary results concerning

periodically correlated processes, we give a closed form expression for a




stationary dilation process Xn for a given periodically correlated process
Xn. This expression gives gn in terms of Xn in the time domain (Theorem 2.1).
Then we figd the spectral measure of Xn’ and thereby give‘an explicit expres-
sion for this stationary dilation in the spectral domain (Theorem 2.3).

Let Xn be a periodically correlated process with period T. Then for
each T, the function R(n,t) defined by

Xn + T’Xn)

. R(n,t) = ¥(n.+ ",r,n) = (
is periodic in n with‘peribd T. Since R(n,t) is periodic in n, one can write
T-1 . )
(2) R(n,1) = L Rk(T) exp (;23%55—-) .
k=0
For convenience, we extend the definition of these Rk(i), k=0, 1, 2, ..., T-1,

to all integers by Rk(T) = Rk+T(T). It is shown [6] that each Rk(r) has a

representation of the form

/211'
(3 R, (1) = —I—J e~ 1TA aF, (),
27 0

where each Fk(.) is a complex valued measure on [0, 2w7]. It is also shown

in [6] that
- 21,27

%) R(n,t) = 1 J( o1 (» +.7)0 + in¥ dF (6, ¥)

4wt 2070 |
or

_ 2w 27 '

(5) Y(n,m) = % { g e 1m0 —n¥)  4p(e,vy,

4T 0

where the spectral measure F(.,.) is given by

T -1
(6) F(A,B) = > dF, () ,
k=-T+1 Aﬂ(B—g_ﬂ}_S)'

T

and B - a 1s the set of all b - a with b € B, This shows




that periodically correlated processes do satisfy (1) with a spectral measure
which is concentrated on 2T -~ 1 straieht line segments. 6 - ¥ = 27k/T,
k=-T+1, ..., T -1 contained in the square [0,27] x [0,2n].

Representations (5) and (6), which are of the form (1), in particular

show that any periodically correlated process Xn is harmonizable and hence,
by Abreu's result mentioned in section 1, has a stationary dilation. The
next theorem gives our explicit form for one such dilation which is probably

the most natural one in this case. But first, we introduce the direct sum

T 2

H™ of T copies of H. HT consists of all vectors X = (Xl, X'y veey XT) with

xt eH, i=1, 2, ..., n. We endow HT with the Euclidian inner product. For

X = (Xl, X2, vees XT) and Y = (Yl, Y2, .o YT) in HT, we define their inner

product ((X, Y)) to be

T i i
(X ¥))= = (&,Y),
i=1
and hence the norm to be ||| X ||} = igl]Xilz.

2.1 THEOREM. Let the sequence Xn in the Hilbert space H be a periodically
correlated process with period T. Then the process gn = (xn,.,., Xn $T ~ 1) in
T .
K =H is stationary and
X =P X,
n -
where P is the projection of K onto its first coordinate (which is certainly

an orthogonal projection).

Proof. To see that gn is stationary, we write

T-1
j=0
T-1
- (Xn’ Xm) + jgl (xn+j’ Xm+j)

Since Xn is periodically correlated with Period T, we have (Xm’ Xn) =

X

T Xn+T) So we can write




T-1
(Q%,zm» —(X*T’xmﬂg'*jﬁl(ﬁﬁi’%ma)
T T~1

= I (X X = T (X s X Lo,
j=1 (n+j ’ m*j) 3=0 ot ) Fmerg)

= (& X)),
The rest of the theorem is clear.

In particular, this theorem shows that given any periodically correlated

pProcess Xn with period T and values in H, then gn (Xn, . X ) is a

"0 Tn+T~1
HT.

stationary dilation for it which takes values in K
2.2 REMARK. One can easily see that the stationarity of En is equivalent to
the fact that Xn is periodically coFrelated.

The next Theorem which gives the spectral measure of this particulatr sta-
tionary dilation of Xn is crucial for any spectral analysis of our process Xn
via its stationary dilatiom.

2.3 THEOREM. If Xn is a periodically correlated process with périod T and.l(n
is its stationary dilation as introduced in Theorem 2.1, then the spectral
measure of Xn is T times dFO(A) (cf. (3) where F0 is the diagonal part of the
measure dF of Xn),

PROOF. Using (2) and (3) we can write

T-1 T-1
(X, X))= ¢ (X_,.,X)= L R(, n)
-’ =0 =0 ntj’ ] §=0
T-1 T-1 .
= g X Rk(n) exp( —2E%EJ—0
j=0 k=0 :
T-1 T-1 . 27
= L5 p exp (2Kl o 1inA d;ﬁg\)
2m . T
=0 j=0 0
T-1 2T T-1 .
= 51—- z Ind et e 2RIy g (1)
m . T k' e
k=0 j=0
0

But one can easily check that




T-1 . 1 if k=0
PN exp('—z_-’r—;‘i(l— ) = '

j=0 0 , otherwise.
Taking this into consideration, we can continue to. write
2T
-i

- L oA
(&, X)) = % ™ ar ),

which completes the proof.

3. MINIMALITY, INTERPOLABILITY, DETERMINISM AND PURELY NONDETERMINISM.

In this section, we astablish spectral conditions for a periodically

correlated process to be minimal, interpolable, deterministic,or purely
nondeterministic.

Given any process Xn (not necessarily stationary), we define Hx(+w) =

SP{X :%XxeZ}, H{(n) =SP{X :k<n}, H(-=) =p0H (n) and H'(n) =
“k X k X X p-4
SP

{Xk : k # n}. The process Xn is called deterministic if Hx(ﬂx) = Hx(n)

for all n, minimal if H;(n) = Hx(+w) for some n € Z, and purely nondetermin-

istic i o) =
istic if Hx( ) 0. ,
3.1 THEOREM. Suppose the periodically correlated process with period T is

purely nondeterministic. Then.F0 must be a.c.q;th respect to Lebesque measure
an@ on

g log £ (A)d\ > ==,
0 0

where fo is the density of FO.
PROOF. Let X be the stationary dilation of X siven in Theorem 2.1. Then
it is not hard to see that

gé(n) S_Hx(n)(}... C)Hx(n+T-1), for all n € Z.
From this one immediately gets

Hl((-w) S H (-=) @... OH (-=).

Since Xn is assumed to be purely nondeterministic and Hx(-m) = 0. We conclude




that Hx(—w) = 0, which means gn is purely nondeterministic. Now the theorem

follows from a well known result for stationary processes [4] [14] which says
that our stationary process Kn is purely nondeterministic if and only if its

spectral measure (see Theorem 2.3) TF, is a.c. and its spectral measure Tf

0 0
2w
satisfies S' log(TfO(A))dX > -=, which is the same as saying F, in a.c.
2w 0
and g log £, > -,
0 0
3.2 THEOREM. Let Xn be a periodically correlated process with period T. For

2m dF¥
Xn to be deterministic, it suffices to have /( log EK—-dl = -=, where
0
dF0 denotes the Radon-Nykodixm derivative of the absolutely continuous part

dAa
of FO.
w dF0 27 TdF
PROOF. 1If log —— dX = -», then log ‘0) dA = ~», This
Sz dé J; ( & )

together with Theorem 2.3 and the well known characterization of deterministic
stationary processes [4],[14] implies that the stationary dilation Xn of Xn
is deterministic. But since X = PX , ome can easily see that this
forces Xn to be deterministic.

The above proof is similar to that of a corresponding proposition in [1]
regarding harmonizable processes.

Proofs of the following two theorems are similar to those of Theorems
3.1 and 3.2 above.In fact, they follow from Theorems 2.1 and 2.3 by recalling
the corresponding well knowns results for stationary processes (cf, C41, [141,
[25] in exactly the same way. Hence we omit the proofs,
3.2 THEOREM. Let Xn be a periodically correlatéd process which is minimal.

Then FO is a.c. and its density fo(k) is a,e., invertible with

27 ar )
o fg(x)

3.4 THEOREM. The periodically correlated process Xn is interpolable if




27 ﬂ 2
|pCe )| d\ =
0 dj_O.
ax

for every non-zero trigonometric polynomial P.

4. POSITIVITY OF THE ANGLE BETWEEN PAST-PRESENT AND FUTURE, Ia this section,

we study the angle between past-present and future for a periodically
correlated process and, using our results of section 2, we get some necessary
spectral céndicions for this angle to be positive. The positivity of this
angle is closely tied with the set {Xn} forminé a Shoulder basis fof its

time domain Hx(+m).(For this and other applications of this concept one can

see [9], [10] and [16]).

For a given process Xn’ besides the subspaces we introduced at the
beginning of section 3, we need to define F(n) = EF{xk: n < k}. As a measure
of the angle between two spaces M and N (in a Hilbert space) it is customary

to consider the quantity (cf,[9])

P(M,N) = Sup | (X, Y) |

: Xe M, Y € N.
X,YzO0 . .
ST [

It is clear that P(M, N) £ 1 and if it is strictly leas than 1, it is said

that the angle between M and N is positive. If, in particular, M is taken to

be'Hx(n) and N is taken to be Fx(n), then we say that the apgle betwgen past-
present and future of Xn at time n 1s positive ifpx(n) = p(Hx(n), Fx(n)) < 1.
If Xn is stationary, then p(n) is a constant function of n, and if Xn is
periodically correlated with period T, then p(n) is periodic with period T.
The stationary process Xn is said to have a positive angle between its past
and future if p(n) < 1 for some and hence every n. A periodically correlated
pProcess Xn has a positive angle between its past and future if p(n) < 1 for
every n = 0,1,...T-1 and hence every n. Positivity of the angle between past
and future is some kind of regularity which is stronger than the ones often
used in prediction theory, namely nondeterminism, purely nondeterminism,

minimality, etc. (cf. [9] and [/6 ]).




The following theorem connects the positivity of a periodically correlated
process X with its stationary dilation Zn‘introduced in Theorem 2.1.

4.1 THEOREM. Let Xn be a periodically correlated process whose angle between

past and future is positive. Then, the angle between past and

future of its stationary dilation én given in Theorem 2.1 is also positive.

PROOF. Take a finite linear combination a = X akgk in H (0) and another one
0

k<
g =1L bJXJ in F (1) Then we can write

j>1
| ((a, B))|—|((k5<30 a, X » 351 b.X ))I
T-1
=| 50 K ;0 b Xyl
T-1
iiﬁo l(z i >0 ¥
T-1
=5 (1) !kio 34Xy | !jgl DXy |
T-1
< Px iEO Iéo ékxk+i| IJil bXipy |o
where p = max {p (i): i=0,1,2,...,T-1}. We can further write
X T-1 2% T-1 2%
| (s )] <o (iEO lkEO ax .l ) (120 Ij;l'bjxjﬁl ),
So we have
| BN <o [ o {1 T g L,

which implies that N f_px. Now since we have assumed that px < 1, we conclude

that Py < 1, which completes the proof.

From the well known characterizations for positivity of the angle for
stationary processes [10], [9]1, it follows that the process gn has a positive

angle if and only if F., is a.c. with a density f_which either satisfies the

0 0

Muckenhoupt condition [10]




10

(7) Sup [ 1 £,(0) dY /1 da
(']—IT(I /] )(llr{]: fo(}\)) < ®)

where sup is taken over all intervals I < [0,27], or is of the Helson

~Szego type [9] .
utv

(8) fo =e .,
where u is a bounded real function and v is the conjugate of a real function
v which is bounded and satisfies the condition || v ||w <"; .

Putting the facts just mentioned along with our Theorem 4.1, we get the following.

4,2 THEOREM. Let X be a periodically correlated process. For X to have a
————————————— n ° -

H.‘ _'
positive angle between its past and future,.it.is.necegsary that

: F0 be a.c. and fo satisfies ei&her the Muckenhoupt condition (7) or is'of_

Helson-Szegd type (8).
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